1 곱미분
F(x)F′(x)=f(x)g(x)=h→0limhF(x+h)−F(x)=h→0limhf(x+h)g(x+h)−f(x)g(x)=h→0limhf(x+h)g(x+h)−f(x+h)g(x)+f(x+h)g(x)−f(x)g(x)=h→0limf(x+h)h→0limhg(x+h)−g(x)+g(x)h→0limhf(x+h)−f(x)=f′(x)g(x)+f(x)g′(x)2 몫미분
F(x)=g(x)f(x)(g(x)=0) f(x)=F(x)g(x)=F(x)g′(x)+F′(x)g(x) F′(x)=g(x)f′(x)−F(x)g′(x)=g(x)f′(x)−g(x)f(x)g′(x)=[g(x)]2f′(x)g(x)−f(x)g′(x) ∴F′(x)=[g(x)]2f′(x)g(x)−f(x)g′(x)3 역함수 미분
f−1(x)=g(x)f(g(x))=xf′(g(x))⋅g′(x)=1g′(x)=f′(g(x))1(1) f(y)=xf′(y)dxdy=1dydx=f′(y)1(2)dydx=g′(x),y=g(x)이므로
g′(x)=f′(g(x))1