이를 [0,x]에 대해 적분하면 (단, 0≤x≤1)
∫0x1+t21dt=x−31x3+51x5⋯+2n+11x2n+1−∫0x1+t2t2n+2dt이때
0≤∫0a1+t2t2n+2dx≤∫0at2n+2dx≤2n+31이므로
∫0x1+t21dttan−1x∴4π=n→∞lim(x−31x3+51x5⋯+2n+11x2n+1)=n→∞lim(x−31x3+51x5⋯+2n+11x2n+1)=1−313+515⋯+2n+11(x=1) L:=k=1∑∞2k−1(−1)k+1=4π