부분 적분을 통해 다음과 같이 쓸 수 있다.
∫0π/2sinnxdxn∫0π/2sinnxdx∴∫0π/2sinnxdx=∫0π/2sinn−1xsinxdx=[sinn−1x(−cosx)]0π/2−∫0π/2(n−1)sinn−2xcosx(−cosx)dx=−[sinn−1xcosx]0π/2+(n−1)∫0π/2sinn−2xcos2xdx=−[sinn−1xcosx]0π/2+(n−1)∫0π/2sinn−2x(1−sin2x)dx=−[sinn−1xcosx]0π/2+(n−1)∫0π/2sinn−2x−sinnx)dx=−[sinn−1xcosx]0π/2+(n−1)∫0π/2sinn−2xdx=nn−1∫0π/2sinn−2xdx In=nn−1In−2